skip to main content


Search for: All records

Creators/Authors contains: "Mills, Stephen A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Campus shutdowns during the SARS-CoV2 pandemic posed unique challenges to faculty and students engaged in laboratory courses. Formerly hands-on experiments had to be quickly pivoted to emergency remote learning. While some resources existed prior to this period, many currently available online modules and/or simulations focus on a single technique. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) curriculum has, for several years, provided a robust, linked, holistic inquiry experience that allows students to make connections between multiple techniques, both computational in nature as well as wet-lab based. As a Course-based Undergraduate Research Experience (CURE), this flexible, module-based curriculum allows students to generate original hypotheses based on analysis of proteins of unknown function. We have taught this curriculum as the upper-level laboratory course on our campuses and were obliged to transition to remote instruction at various points in the course sequence. We report on the experiences of faculty and students over the transition period in this course. Additionally, we report as a case study results of one of our campus’ ongoing discipline-based education research (DBER) on the BASIL curriculum prior to and during remote delivery. 
    more » « less
  2. Abstract

    Understanding the molecular evolution of the SARS‐CoV‐2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three‐dimensional structures of SARS‐CoV‐2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID‐19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein–protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi‐Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein–protein and protein–nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure‐based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.

     
    more » « less